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ABSTRACT: We study the phase structures of N/ = 4 U(N) super Yang-Mills theories on
R x S3/7; with large N. The theory has many vacua labelled by the holonomy matrix
along the non-trivial cycle on S3/Z;,, and for the fermions the periodic and the anti-periodic
boundary conditions can be assigned along the cycle. We compute the partition functions
of the orbifold theories and observe that phase transitions occur even in the zero 't Hooft
coupling limit. With the periodic boundary condition, the vacua of the gauge theory are
dual to various arrangements of k£ NS5-branes. With the anti-periodic boundary condition,
transitions between the vacua are dual to localized tachyon condensations. In particular,
the mass of a deformed geometry is compared with the Casimir energy for the dual vacuum.
We also obtain an index for the supersymmetric orbifold theory.
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1. Introduction

Recently the thermodynamics of large N gauge theories on compact spaces attract much
attention. On compact spaces the Gauss constraint restricts physical states into gauge
invariant form, and due to this fact the theories are in a confinement phase at low tem-
perature, and undergo a deconfinement transition at a critical temperature. Moreover, the
large N gauge theories may have their dual description in terms of string theory on an
asymptotic Anti-de Sitter (AdS) space [[]. For example, the partition function for a large
N gauge theory on R x S% was computed in [, B], and it was shown that the partition
function is of order O(1) at low temperature and of order O(N?) above a critical temper-
ature. In the dual gravity theory, the phase transition corresponds to the Hawking-Page
transition [, ], where the thermal AdS space is dominant at low temperature and the

AdS-Schwarzschild black hole is dominant at high temperature.



In this paper, we study the thermodynamics of N' = 4 U(N) super Yang-Mills the-
ory on R x $3/Z;.! We construct the orbifold theory in the following way. The man-
ifold S% has a U(1) symmetry along a cycle, and the orbifold is constructed by divid-
ing Zj rotation along the cycle. The background does not include any fixed point, but
has a non-trivial cycle due to the orbifold procedure. We can introduce flux along the
non-trivial cycle, which gives non-trivial holonomies to the fields. Therefore, the the-
ory admits many vacua labelled by the choice of flux, and this makes the phase diagram
richer. Along the non-trivial cycle, we can assign periodic and anti-periodic boundary
conditions to fermions along the non-trivial cycle, and this leads to supersymmetric and
non-supersymmetric theories at zero temperature. We study the gauge theories pertur-
batively with respect to the 't Hooft coupling A\ = Ng%/m.2 In this paper, we consider
the zero 't Hooft coupling limit, where the theories reduce to free field theories. Even
in this limit we observe phase transitions due to the compactness of the base mani-
fold.

In this orbifold case the dual gravity description is also available, thus the phase di-
agram can be extended into the strong coupling region. For the case with the periodic
boundary condition, the dual geometry is the orbifold of the thermal AdS space or its
deformation by localized massless states in the low temperature phase. In the high tem-
perature phase, the dual geometry is the orbifold of the AdS-Schwarzschild black hole or
its deformation. If we perform the T-duality along the non-trivial cycle, then we obtain
k NSb5-brane configuration, which is parametrized by the positions of & NS5-branes [f.
For the case with the anti-periodic boundary condition, there are localized tachyons at
the fixed point of the thermal AdS orbifold in the low temperature phase. The con-
densation of localized tachyon may resolve the orbifold singularity like [B] and lead to
the deformed geometry obtained in [I{, [] called as Eguchi-Hanson soliton. In other
words, the gauge theory gives the dual picture of the localized tachyon condensation dis-

3 At enough high temperature, the dual geometry should be the orbifold

cussed in [
of the AdS-Schwarzschild black hole, and there are no localized tachyons in the geome-
try.

Following the analysis in [B, B], we obtain the partition functions for the gauge theories
in terms of a matrix integral. At low temperature, we find the leading contribution comes
from the Casimir energy of the theories on S3/Z. For the case with the periodic boundary
condition, the Casimir energy is the same for all the vacua and the same as the mass of the
thermal AdS orbifold. For the case with the anti-periodic boundary condition, the Casimir
energy is smallest for the vacuum dual to the deformed geometry. Interestingly, the Casimir
energy is roughly 4/3 times the mass of the Eguchi-Hanson soliton. In the high temperature
limit, the partition function behaves in the same way for all possible holonomies and spin

!The orbifold theory at zero temperature has been studied in [ﬂ]7 see also [ﬂ, E]

20n the compact space, we have a tunable dimensionless parameter RA, where R is the radius of S°
and A is a cut off scale. If we take RA < 1, then the Yang-Mills coupling can be set small even at low
energy. Even with this fact we set R = 1 for simplicity.

3Previous attempts to apply the AdS /CFT correspondence to the localized tachyon condensation have

been given in 7].



structures. Near the critical temperature, we can perform an analytic computation by
using the Gross-Witten ansatz [|[L7] as an approximation, and we can discuss the dominant

contribution to the total partition function.

The organization of this paper is as follows. In the next section, we define the orbifold
gauge theories on R x S3/7Z; with generic holonomy by utilizing the standard orbifold
method as in [[[§. We compute the partition function for the orbifold gauge theories
by following [B, fl]. In section [§ we analyze the partition function and discuss the phase
structure. We observe that the dominant contribution comes from the Casimir energy at
low temperature, and we compute the Casimir energy for the case with general holonomy.
Near the critical temperature we solve the partition function analytically by making use
of the analysis in [[7]. At very high temperature, we obtain the partition function as
an expansion of the temperature T', which does not depend on the choice of holonomy.
In section W we analyze the large 't Hooft coupling limit in the dual gravity description.
We discuss the relations to the arrangement of k& NS5-branes for the case with the peri-
odic boundary condition and to the localized tachyon condensation for the case with the
anti-periodic boundary condition. Section [] is devoted to conclusion and discussions. In
appendix A we compute the partition function of single scalar particle as an example.
In appendix B the index proposed in [[d] is computed for the supersymmetric orbifold
theory.*

2. Orbifold gauge theories

We consider N’ = 4 super Yang-Mills theories on R x S /Z;, with large N U(N) gauge sym-
metry. The 3-sphere S3 has SO(4) ~ SU(2)1 xSU(2)3 isometry, and we divide the gauge the-
ories by 27 /k rotation along the x-cycle of U(1), C SU(2)2. Since 71(S3/Zy,) = Zi, we can
assign a non-trivial holonomy matrix V' = Pexpi ¢ A, along the non-trivial cycle. Using
the U(N) gauge transformation, we can set V as a diagonal matrix V' = diag(£y,...,Qn).
Because of the condition V¥ = 1, the element should be a k-th root of unity Qéﬁ = 1.
Therefore, we can label the vacua by (ng,...,nx_1) with N = Zl;;é ny, where ny repre-
sents the number of j such that Q; = w! (w = exp(27i/k)). Then the orbifold theories
are defined by projecting the Hilbert space into the orbifold invariant subspace as below.
In the following we consider two special vacua. One is the Z; symmetric vacuum® with
ny = N/k for all I. Due to the Zj symmetry the dual geometry can be identified as the
standard orbifold. The other vacua do not preserve the Z; symmetry, thus the dual ge-
ometry should be a deformation of the orbifold. The other important vacuum is with the
trivial holonomy V' = 1 or equivalently ng = N. In this case the Z; symmetry is maximally
broken.

4Similar computations were done in [@ for quiver gauge theories, which are constructed as orbifolds
different from ours.

®In this case N is assumed to be N = kZ. However, for large N and finite k, the difference from the
general N case should be negligible.



2.1 Partition function

We would like to compute the partition function of gauge invariant operator in the orbifold
theories. In general, the counting of gauge invariant operator is an involved task. Fortu-
nately, it was shown in [}, f]] that the partition function of gauge invariant operator can
be written in terms of single-particle partition functions as

Z(x) = /[dU] exp [ZZ %zR(x”)XR(U") . (2.1)

R n=1

At this stage, a gauge group G could be arbitrary, and the sum is taken over all represen-
tation R of the gauge group G. We denote xr(U) as the character for representation R,
and [dU] as the Haar measure for the group element U. The partition function of single
particle in the representation R is computed by

) =) ¥, (2.2)
E

where F denotes the energy eigenvalue. The condition of gauge invariance comes from the
integral over U, and the variable U will be identified as the holonomy matrix along the
thermal cycle.

We can adopt any gauge group G and representation R in the formula (2.1)), and several
interesting examples have their dual gravity description. The most famous one arises from
the N D3-brane worldvolume theory, which is dual to superstrings on AdSs x S°. The
theory is N = 4 super Yang-Mills theory on R x $3 with gauge group G = U(N), where the
states are in the adjoint representation. Our interest is on the orbifold gauge theories with
holonomy along the non-trivial cycle, where the existence of the holonomy (ng,...,nk_1)
breaks the gauge symmetry into G = H];;(l] U(ns). With respect to the broken gauge
group, the states are in the adjoint representation for U(n;) or in the bi-fundamental
representation (ny,ny) for U(ny) x U(ny).

The spectrum of the orbifold theories can be obtained by projecting the spectrum on S°
into the orbifold invariant subspace. The spectrum on S2 can be obtained from the spherical
harmonic analysis as in [I]. The theory includes 6 scalers, a gauge field and 4 Majorana
fermions. The scalars can be expanded by the scalar spherical harmonics S m(£2), where
Q) represents the coordinates of S3. The eigenfunctions of Laplace operator on S are given
as

V28, () = —5(G + 2)Sjmm(Q) . (2.3)

The labels (m,m) are eigenvalues of J3 and J3 for SU(2); and SU(2)2, and they run

—j/2,—3/2+1,...,5/2 —1,7/2. The projection into the orbifold invariant modes is per-

k

formed by the projection operator P = % > I;é ', where T represents the orbifold action.

®The diagonal U(1) parts of each U(nr) may be decoupled from the rest, but the difference can be
ignored when n; are very large. See, however, appendix B for the case of an index.



For a bi-fundamental state (ny,7n7) or an adjoint state with I = .J, the orbifold action is
given by

F — eQﬂ'ijg/kwI*J’ (24)

where w = exp(27i/k). The orbifold action consists of two parts. The first part is the
phase shift due to the Zj rotation along the y-cycle. The second part is the holonomy for
the bi-fundamental state (ny,n7). We can see from (.4) that the orbifold invariant modes
are restricted to m = J — I mod k. As a notation we define 0 < L < k subjectto L =J—1
mod k. Now we can compute the partition function for the single scalar particle (2.3) as

1 (zlH] — 43 =L+l LBy gk
zg" (2) = (1— 22)2(1 — 2F)2
(L + 1)mL+1 _ (L _ 1)xL+3 _ (L _ 1)xka+1 4 (L 4 1)xka+3
’ (=1 =) '

(2.5)

See appendix A for the detail. We have used the fact that the energy is given by £ = j+1
for a scaler on S3 conformally coupled to gravity.

We move to the gauge field, which is expanded by the vector spherical harmonics

mem(Q)7 We use the notation such that the vector index is contracted with an auxiliary
é“. The vector spherical harmonics V' _ and V.~ _ belong to

. . . . j7m7m j7m7m
the representations (ji,j2) = (%, %) and (%, %), respectively. The eigenvalues of

: £ +
unit vector §, as Vj,m,m;u

Laplace operator on S2 are

Vvt

j7m7m

() = —(+ 1)VE, (@) . (2.6)

The orbifold action to the vector spherical harmonics is the same as in the scalar case (P.4),
since the vector index is contracted with an auxiliary unit vector. Therefore, the orbifold
projection allows only the modes with m = J — I mod k for the bi-fundamental state with
(nr,ny). The partition function is then given by

s J( ) (xLJ,-Q _ pLt4 + o L+2 CC_L+4)]CCUk
b x —
v+ (1 _ x2)2(1 _ CEk)Q

z

L+ 8)2L+2 — (L 4+ 1)al* — (I — 3)ak—L+2 4 (I — 1)gh-L+ (2.7)
(1-— x2)2(1 _ xk)
for VjJ,rm,m and
z‘[/’{(g:) IOt A +2$27L - w};z+2)kxk
PR (2.8)

(L — Dl — (L - 3)2"+2 — (L + 1)aF=F 4 (L 4 3)zh—1+2
* (L= 22)2(1 — ")

for V. We have defined L = J — I mod k (0 < L < k) as before.

J7m7m.

"A longitudinal mode is expanded by the scalar spherical harmonics as vSs , and we do not consider it.



Fermions are expanded by the spherical harmonics F]‘Lm () and F: - (§2), which

J,m,m

belong to (j1,72) = (3, %) and (£51,4). The spinor index is again contracted with an

@ The eigenvalues of Laplace operator on S are

auxiliary spinor y* as F= GmmiaX
2+t . +
V2 () = =+ $)F;, () . (2.9)

For fermions we can assign two types of boundary conditions along the non-trivial cycle.
The orbifold action depends on the boundary condition as

T = 2™ s/ky 1= (2.10)

where + and — means the periodic and the anti-periodic boundary conditions, respectively.
For the periodic boundary condition, the orbifold invariant modes are given by those with
m = J — I mod k. The anti-periodic boundary condition can be assigned only for even k,
and the restriction is shifted by k/2 as m = J — I + k/2 mod k. For the periodic boundary
condition, the partition function can be computed as

L () (xL+% — I x_L+%)kxk
25 (x) =
F+ (1—22)2(1 — zF)2 2.11)
. (L + Q)xmg B (L — 2)$H+g 4 Lok L+s ’
(= 22)2(1 — )
for F]+mm and
IJ( ) (xLJr% — gl p oLt fo+g)kxk
20 (x) =
F (1—22)2(1 — zF)2 2.12)
. Lal+s — (L - 2)xL+% — Lab~I+3 ¢ (L + Q)xk_L‘% ‘
1 —22)(1—ab)
for F; - For the anti-periodic boundary condition, we should use L = J — I + k/2 mod

k with 0 < L < k instead of L = J — I mod k.

Now we can write up explicitly the partition function (R.1]) for AV = 4 super Yang-
Mills theories on R x $3/7Z;, with holonomy (ng,...,ng_1). The total partition function
is given by summing over all the vacua. It is useful to use the formula for the character
of bi-fundamental representation as X(nbﬁ(,)(U )=TrU;Tr U}, where the trace is taken in
the fundamental representation. The partition function is then given by

/HdUI exp ZZ—Z ) Te(UP) Te(U | (2.13)

I,J n=1

where the single-particle partition function is summarized as
2 (@) = 6257 (27) + 2D (@) + 207 (@) + (1) R (@) + 2 (27 (2.14)
for the case with the periodic boundary condition and

IJ+%

R0 AALTE ) BRCRE)

o (x) = 62”7 (") + 2y (o) + 27 (@) + (1) =)

for the case with the anti-periodic boundary condition.



Finally let us remark on the difference from the D-brane worldvolume theories localized
at the fixed point of C"/T" with n = 2,3 [[L§]. Since the orbifold action acts trivially to the
worldvolume in those cases, only bi-fundamental matters with I,I + 1 and adjoint gauge
fields (and matters) are left under the orbifold projection. On the other hand, the orbifold
action rotates S® by 27/k in our case, there is a m dependent phase in ®4). Due to
this effect, bi-fundamental states with every pairs of I, J (and adjoint states with I = .J)
survive the projection each for matters, gauge field and fermions. The difference would be
significant if we compare our case with the duality between superstrings on AdS5 x S°/T
and the gauge theory coming from D3-branes at the fixed point of orbifold action I' [2J].

2.2 Path integral formulation

In the previous subsection, we have obtained the partition function of gauge invariant op-
erator (2.13) in terms of integral over the group manifolds. However, we cannot determine
the overall pre-factor in the formulation. In this subsection, we re-derive the partition
function in the path integral formulation. In this derivation, we obtain the normalization
depending on the Casimir energy of the gauge theories on R x $3/Z;,. The Casimir energy
will be important when we consider the phase structure at low temperature. Moreover, we
can identify U; as the holonomy matrix for U(n;) gauge group along the thermal cycle.

The path integral for the partition function with a finite temperature 7" may be com-
puted on S x §3/Z;, where S' is the thermal cycle with periodicity 8 = 1/7. Along
the thermal cycle we assign the anti-periodic boundary condition for the fermions.® We
start from fixing the gauge symmetry and then introduce the Faddeev-Popov determinant
conjugate to the gauge fixing. We adopt the Coulomb gauge

VoA =0 (2.16)

with V, as covariant derivatives along the S® direction (a = 1,2,3). If we do not include
a non-trivial holonomy, then there are spatially constant modes of the gauge field. The
presence of holonomy (ng,...,n;_1) breaks the gauge group into [[; U(ns) and spatially
constant modes are left only for []; U(ns).” The time-dependence of these modes is not

fixed by the Coulomb gauge (R.16), and we fix these degrees by

I __ I __ 1 / I
dal =0, o = Gz | 94 (2.17)

where the integration is performed over S3/Zy.
First we consider the Faddeev-Popov determinant conjugate to (B-I7), which is given
by

Abp = det’ (8, D)), DI =0, —ild, . (2.18)

8Due to this boundary condition, supersymmetry is always broken at a finite temperature even for the
theory supersymmetric at zero temperature.

9The projection under the orbifold action (E) removes spatially constant modes with m = 0 for I # J
sectors.



The determinant is taken over the non-zero modes. Diagonalizing the zero modes as a! =

diag(a], ... a},,), the measure can be written as
da! = Hdai[ H lad — 04][-] , (2.19)
i ij

where the Van der Monde determinant arises from the integration over the off diagonal
elements. Now that the bosonic modes are periodic along the thermal cycle, they can
be expanded by the function exp(27wint/3) with n € Z.1° Thus the determinant can be
written as

A =TTT1 27;" (272" —i(al - a]f.)) . (2.20)

i.j n0

With the help of the formula [[°° (1 — 22/n?) = sinwz/(7z), we find up to an overall

n=1
factor

I_ ol
[dU;] = do’ Afp = [[ def [ ] sin® <M) : (2.21)

i<j

which is the Haar measure of U; = exp(ifal).

(]

The Faddeev-Popov determinant conjugate to (R.1€) is given by
det V,D* = /[dcdé] exp(—cV,D%), (2.22)

which should be added to the action of N/ = 4 super Yang-Mills theory. Notice that the
ghosts are expanded by the scalar spherical harmonics projected into the orbifold invariant
modes. After integrating over the massive modes including the c-ghosts, the partition

function is given in terms of integral over the zero modes as
Z(T) = / [ dvre 5. (2.23)
I

Let us first compute the contribution from the gauge field and the c-ghosts. Since the longi-
tudinal modes VS and A, (except the zero modes a!) are expanded by the scalar spherical
harmonics, the contributions to the path integral from the c-ghosts and the longitudinal
modes cancel out. Therefore, the contribution reduces to the Gaussian integral over the
vector spherical harmonics, which is evaluated as

S(U) = % IZ}: EE:[nQi (E) +nl (E)] ndet(~D? + E?) . (2.24)

10For fermionic modes, we should replace n by n + 1/2 since we have assigned anti-periodic boundary
condition along the thermal cycle.



We denote n{/’i (E) as the degeneracy of eigenstates with E in the representation (ny,ny).
Following the computation in [§], we find

=+ > nans 3 B) 4 (D)
(2.25)
B Z (e Ty 4 2L (T Te(U) Te (Ul

1,J nzl

In the same way, we can compute the contributions from scalars and fermions and sum-

marize all the contributions as!!

SW)=pVo—> Z Y VT (U (U (2.26)

IJnl

where 22/ are the single-particle partition functions (B-14) or (R-15). The first term is the
Casimir energy

Z nmy Z 6n5” (E) + nlyl(B) + n)) (B) — 4nbl(B) — anl(B)E . (2.27)

Compared with the expression of (2.13), the integral variables U are identified with the
holonomy matrices Uy = exp(ifal) with respect to the gauge group [[; U(n). In this
way we can see that the previous expression only includes the finite temperature contribu-
tion. The zero temperature contribution, which comes from the Casimir energy, should be
included in the partition function.

3. Phase transitions of the gauge theories

In the previous section, we have obtained the partition function of gauge invariant operator
in terms of integral over Uy as (R.23) with (2.26). In this section, we perform the U; integral

in the large N limit'? and examine the phase structure of the orbifold theories. For large
N and fixed k, it is natural to assume that n; in the label of holonomy (ng,...,nx_1)
are very large. In case that some of n; are very small, then they may be set zero in this
limit. We consider two specific vacua in the following. One is the Z; symmetric holonomy
vacuum with ny = N/k and the other is the trivial holonomy vacuum with nyg = N. In
these cases our assumption is valid. In the next subsection we study the low temperature
phase, and in subsection B.9 we focus on the Casimir energy contribution. In subsection B.3
we obtain an analytic expression under an approximation near the critical temperature. In

subsection B.4 we take the high temperature limit, where the analysis becomes simpler.

"1n the expression of () with (, the normalization has been set by dividing holonomy independent
factors. Introducing the holonomy (no,...,nr) along the x-cycle, the lowest modes in U(N)/[]; ( 1)
become space-dependent, and hence they can be fixed by the Coulomb gauge (R.16) instead of )
The normalization of each Faddeev-Popov determinants may depend on the choice of holonomy along the
x-cycle, but the sum of both should not.

12Finite N effects may be examined by following the analysis in [@7@]



3.1 Critical temperatures

It is convenient to diagonalize the eigenvalues of holonomy matrix Us as exp(ifr,;) with
-t < 01; < 7.13 For large n; the discrete elements may be replaced by a continuous
parameter 0; with a density p’(f7). The density has to satisfy p!(f;) > 0 and the nor-
malization is set as ffﬂ p'(0r)df;r = 1. In this approximation the effective action (£.24)

. (01 —0)
sin <72 ) ‘

+ Z —259 () cos(n (07 — 9{,))}

becomes

St (0n) = BVo — S mny / byl (61)p" (6)) 51,5 1n
1,J

(3.1)

with 2 = e~/ The first term in the bracket arises from the change of measure [dU;] —
[d;;]. In terms of the Fourier transform pl = [dfrp!(0r)cos(nfr),!* the effective action

B.1) is given by

ﬁV(]+anJZp o VI (2 (3.2)

where
V. (x) = l(5I,J — 2 (z)) . (3.3)
n

At enough low temperature, the repulsive force coming from the first term of (B.3)
dominates, and the uniform distribution p}, = 0 for n > 1 is the classical solution to the
effective action (B.3). Therefore, there are no order O(N?) (nor order O(N)) contribu-
tions from the effective action except for the Casimir energy term (Vp. An order O(1)
contribution comes from the Gaussian integral as

[e o]

1

, (3.4)
n—1 det (nanVnI’J(:C))

where the determinant is over the labels 0 < I, J < k. As the temperature increased, the
second term of (B.3) contributes to the potential, and the determinant would vanish at a
critical temperature z. = exp(—1/T.). Above the critical temperature, the distribution
becomes non-uniform and the classical contribution is of order O(N?).

Let us examine two concrete examples. We start from the trivial holonomy case, where
the action (B.9) reads

S[eh) = 8%+ N AR ) (35)

BThe eigenvalue 07 ; is related with the zero modes in () as 0r,; = Bal.
14We assume that 6; is distributed symmetrically around ; = 0.

,10,



k ¢ (periodic) | T, (periodic) || z. (anti-periodic) | T, (anti-periodic)
2 0.095663 0.426090 0.095663 0.426090
4 0.104448 0.442661 0.127999 0.486445
6 0.104684 0.443104 0.139545 0.507777
8 0.104689 0.443113 0.142528 0.513290
10 0.104689 0.443113 0.143136 0.514414

Table 1: The critical temperatures z. = exp(—1/7.) and T, for the N' = 4 super Yang-Mills
theories on R x S3/7Z;, with the trivial holonomy V = 1. We set k = 2,4,6,8,10. The periodic and
anti-periodic boundary conditions are assigned for the fermions along the y-cycle.

At enough low temperature, the coefficients of [p0|? are positive, and p? = 0 for n > 1
is the saddle point. Now that the coefficients are 1 x 1 matrices, the determinant (B.4) is
simply

o0

1
}'[1 e (3.6)

We have changed the normalization such that only the Casimir energy term is left at
r = 0. As the temperature increased, the coefficients of [p%|?> become smaller, and at
a critical temperature T = T, a coefficient vanishes. Since the single-particle partition
function is a monotonically increasing function of x, the first zero comes from the n = 1

part when 1 — z? 0

() = 0. The critical temperatures x. and 7, are summarized for small
k in table . We should note that for k = 1 the critical temperature reduces to the one for
R x 52 case [B, f] as . = 7 — 4v/3 = 0.071797 or T, = 0.379663.

Another interesting case may be with the Zj symmetric holonomy n; = N/k for all I.

In this case the action (B.9) is given by

N
Sk) = Vo + o SO okl (01— 2 (@) (37)

1,J n=1

Notice that the coefficients of p! take the form of a circulant matrix since zb" only de-
pends on the difference I — J. Using the formula for a circulant determinant (B.1), the
determinant (B.4) can be written in a compact form as

oo k—1

H H WIJZOJ( ) : (38)

nlIO

As before it is enough to focus on the n = 1 factors. If we increase the temperature, then
the denominator diverges when " ; 2 0 J( ) = 1. Among the other factors, this factor gives
the divergence with smallest . since z?"](az) is positive for all J. Remarkably the critical
temperature is the same for all £ and for both the spin structures as x. = 0.071797 or
T, = 0.379663 as in the R x S2 case. Actually this is an expected result since the sum of
all sectors with weight one ) ; z?"](az) is the same as the single-particle partition function
for the R x S3 case.

— 11 —



3.2 Casimir energies

At low temperature, the determinant (B4) is of order O(1) and the contribution from the
Casimir energy (.27) is dominant. The Casimir energy is an important quantity since it
is supposed to correspond to the mass of the dual geometry. In order to compute Casimir
energy, we have to sum over infinitely many states, and this may lead to a divergent result.
Thus we have to choose a regularization, but it is a subtle problem for quantum field theory
on a curve background [Rf]. Fortunately, we will find that the Casimir energies in our case
are finite, thus we do not need to worry about this difficult issue.

In order to regularize the infinite sum in the Casimir energy (2.27), we first introduce
a cut off factor e F/1 as

> 6ng” + 0yl +np! —anpl —anpt ) peEin (3.9)
E

and finally take the limit e = 1/u — 0. This regularization may be justified by the fact that
no divergent terms are left in the final results. The above regularization can be realized by
using the identity (A = S, VE, F't)

d

IyJ —€ I,J —€

n,” (E)Ee E___deZA (™), (3.10)
E

so we need the expansion of single-particle partition functions by € up to O(e) as

2 Te ek ek®  eL(k—L) eL?(k— L)

257 () ~ - 180k 736 7360 6k 12k (3.11)
_ 2(k — L)2
. 56L(§k L) L (f% L) , 2 3 (3.12)
zfp’i(e_g)N%‘ﬁi%qiﬁ?gi%JrQ:;gk_%Jr%
LeLh—1) (kL) (3.13)

12k 12k
Below we discuss the cases with the periodic and the anti-periodic boundary conditions
separately.
For the case with the periodic boundary condition, we have
1,J 1,J 1,J 1,J LI\ —eE 3
Z(Gns +nyy oy —4dngy —dnpl)Eem Y = @—i—(’)(e) . (3.14)
E
As mentioned before, the final expression does not depend on the cut off parameter e, which
might be due to the large supersymmetry. Moreover, the Casimir energy does not depend
on the indices I, J, and this means that the Casimir energy is the same for all choices of
holonomy (ng,...,ng—1). This is consistent with the argument in [fj] that the vacua with
different holonomy are degenerated at zero temperature. Notice that the Casimir energy
3
Vo=N>— 3.15
0 1ok (3.15)

is precisely the same as the mass of AdS5/Z;, as we will discuss below.
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For the case with the anti-periodic boundary condition, the above cancellation among
I, J dependent terms does not occur in general. With L = J — I mod k (0 < L < k) we
find

k k
Z(Gné"] + n{,ﬁ + n{/{ — 4n;’i+2 — 4n;’{+2)E6_6E
E
(3.16)
3 kK 2 1
S S R T T (Y
R v {k 3< +L>}+O(e)

for 0 <L < % and L is replaced by k — L for % < L < k. Notice that the divergent terms
proportional to 1/¢* and 1/€? cancel out even in this case. The Casimir energy depends
on the choice of holonomy due to the L-dependence of the zero point energy (B.1€). The
dominant contribution to the total partition function comes from the vacuum with smallest
zero point energy, which is realized with the trivial holonomy. This is because the value
inside the bracket in (B.16) is always positive for all 0 < L < g if we set k > 4.1 The
Casimir energy for the trivial holonomy case is given by

3

Vo = N? <1g’—k+1—2—z—8>, (3.17)
which will be compared with the mass of the dual geometry ([.13). Another interesting
case may be with the Z; symmetric holonomy. In this case, we sum up every L with the
same weight, and hence we except that the cancellation between the sectors with L and
L + k/2 occurs. This can be confirmed by a direct computation, and the Casimir energy

is obtained as (B.17).16
Before finishing the arguments on Casimir energy, we would like to make a comment
on the validity of regularization adopted here, even though the divergent terms cancel out
in the final expressions. Let us write the radius R of S? explicitly such as E = (j +1)/R
for the scalar case. Then the divergent parts are proportional to u*R? and u?R in each
single-particle partition function. For quantum field theory on a curved background, the
divergent terms of energy momentum tensor should be absorbed by the renormalization of

coefficients in the Einstein-Hilbert action. In our case the divergent terms may be absorbed
by the counter terms au* i V9 and bu? i VIR. See ] for more detailed discussions.

3.3 Just above the critical temperatures

The eigenvalues distribute uniformly due to the repulsive potential at low temperature,
however the eigenvalues get together due to the attractive potential above the critical
temperature. In particular, the densities may be gaped and vanish except for —0;. < 07 <
frc.. The condition that an eigenvalue 6; does not feel any force is obtained as

6 _9/ k*l o0 )
ni / de}pfw})cot( 5 I) = z;nmjz_jlz#%x)pi sin(nfy) (3.18)

B For k = 2 the cases with the periodic and anti-periodic boundary conditions lead to the identical result.
The Casimir energy in this case was already computed in [E, @] by following the general method

of [@]
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from the action (B.1)). The general solutions subject to the normalization condition pf =1
can be obtained by following [R7, ] in principle. However, the analysis is quite compli-
cated generically, so we adopt an approximation by setting z,ll"](x) =0 for n > 1. This
approximation may be justified for small z ~ z. as in table [] by the fact that zTILJ(x) with
n > 1 is much smaller than z//(z). In the following we will explicitly solve these equations
for the trivial holonomy case with V' =1 and the Z; symmetric case with n; = N/k.

Let us begin with the trivial holonomy case, where the condition (B.1§) reduces to

_pn
/ dfp° (0) cot (90 5 90) = 221%(x)p{ sin b . (3.19)

This case is almost the same as the R x S3 case analyzed in [, ff]. The solution is given
by the form of the Gross-Witten ansatz [[L7] as

1 0, 0 0
p°(6p) = ﬁ\/sin2 = _ gin2 = cos — (3.20)

T sin

for —0,. < 0y < 0. and zero for otherwise. The parameter 6. satisfies

0 1
. o Uc
sin®“ —=1—,/1——F5—. (3.21)
0,0
2 2 (2)
With this solution we can compute the classical action and the free energy F'= —T'In Z =
T(S) as
F 1 1 0 1
— Vg T —=+=lnsin? = — - | . 3.22
N2 <2sin2%+2 S 2) (322)

Near the critical temperature, it is given as
d _
— = Vo= = (T = To) 2 (e YD) per, + O (T = T0)?) (3.23)

For the purpose of comparison with the Zj; symmetric case, we draw plots of the free
energies for k = 4,6 in figure [ In the figure we have shifted the zero point energy by
3/(16k).

For the Zj symmetric case, the condition (B.1§) becomes

k-1

O — 6"
/ de'mf(e;)cot( = f)zzzz{’%)pzsme], (3.24)
J=0

and the generic solutions are quite complicated. However we only need the solution re-
sponsible to the phase transition at the critical temperature x. satisfying ) ; z(l)"](xc) =1.
With the help of the Zj symmetry, we assign that the densities of eigenvalue take the same
form as p! (67) = p(#7) for all I. Then the solution can be easily found as

1 0 0 6
9y — in2 %e g2 91 oo Y 3.25
p(0r) 7Tsin2&\/sm 5 — sin 5 cos o (3.25)
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Figure 1: Free energies F(T)/N? as functions of T in the cases with the periodic and the anti-
periodic boundary conditions and with k = 4,6. The solid lines are for the trivial holonomy case
and the dotted lines are for the Zj; symmetric case.

for -0, < 6 < 6. and zero for otherwise. In this case 6, satisfies

0 1
. 2 V¢
sin® = =1— /1 - ————r— . (3.26)
_ J
2 \/ She e (@)

This is valid for x satisfying > ; z?"](:ﬂ) > 1, and the equality holds for the critical tem-

perature x = z.. The free energy is

F? T 1 1 0. 1
— V- = —= +=-Insin®? = - = 3.27
and near the critical temperature
F? Ty d 152 o0y, _1r 2
N2 2V (T -To) e Hzl (VD) per, + O (T = T.)?) . (3.28)

See figures [ for k = 4, 6.

Let us compare the free energies for the above two cases. For the case with the
periodic boundary condition, the free energy for the Z; symmetric case is lower near the
critical temperature, since the critical temperature is smaller in this case. Near the critical
temperature, the free energy is proportional to T — T, as in (B.2J) and (B-2§), and the
coefficients in (B:2§) behaves like 1/k.17 From this reason the free energy for the trivial

7This is checked for small k by a numerical computation.
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holonomy case is lower at slightly higher temperature for large k as in figure[[. For the case
with the anti-periodic boundary condition, the free energy for the trivial holonomy case
is lower than for the Zj; symmetric case due to the Casimir energy Vj. Since the Casimir

energy behaves like k3, the difference of free energy becomes bigger for larger k.

3.4 High temperature behaviors

At higher temperature the approximation in the previous subsection is not valid any more,
and the contribution from n > 1 terms in (B.1§) should be taken into account. Fortunately,
the analysis becomes simpler when we take the high temperature limit 7" > 1. This limit is
the same as the limit of large radius R of S3, where we can use the flat space approximation.
In this limit, the densities of eigenvalue may be given by the delta function, thus we set

pL =1 for all n. From (B.J) we find

St caor [+ (-5) ] or [ £+ (3 ()] o (7).

(3.29)

which may be read off from the expansion of zi"](e*) by €. The coefficients of T° terms
can be given by the degrees of freedom in the flat space limit, where the volume should be
divided by k. Since the above expression does not depend on L, the free energy behaves
in the same way for all the vacua and for both the spin structures in the high temperature
expansion. This is quite natural since the high energy excitations should not depend on
the vacuum structure. In summary, the free energy F' = —T'In Z and the expectation value
of energy E = —% In Z are given by

2 4 2 2 2
r-X (%T4 _ %ﬂ) rou), EB=1- (W4T4 - %TQ) Lo() (330

for every choice of holonomy and for both the spin structures. This energy was already
computed in [§] in a different way.

4. Dual gravity description

In the limit of large 't Hooft coupling the dual gravity description is more appropriate
to discuss the phase structure of the gauge theories. In the dual picture the confine-
ment/deconfinement phase transition is described by the Hawking-Page transition [H, [
In this section we investigate the Hawking-Page transition in the dual geometries and try
to see whether the phase structure continues from the one at zero ’t Hooft coupling. In the
next subsection we review the Hawking-Page transition between the thermal AdS space
and the AdS-Schwarzschild black hole. In subsection .9 we move to our orbifold cases.
With the periodic boundary condition, the geometries are given by various arrangements
of k NS5-branes in a T-dual picture. With the anti-periodic boundary condition, there are
localized tachyons at the fixed point of the thermal AdS orbifold. The condensation of the
localized tachyon is discussed in subsection 3.
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4.1 Hawking-Page transition

The boundary gauge theory at finite temperature may be defined on S' x S? with a thermal
cycle, and we have to include all geometries with the same boundary condition to compute
a path integral in gravity theory. The geometries are obtained by extending the boundary
S1x 83 into the bulk, which can be done in two ways. One of the geometry has the topology
of S' x B*, where the 4 dimensional ball B* is obtained by filling the inside of S3. This
geometry is the thermal AdS space, where the thermal cycle has a periodicity. The other
geometry has the topology B? x S3, which is the AdS-Schwarzschild black hole. We will see
that the thermal AdS space is dominant at low temperature and the AdS-Schwarzschild
black hole is dominant at high temperature.
The metric of the thermal AdSs is given by

dr? r2

2 _ 2 2,9 _
ds® = g(r)dt” + m +ridsgs, g(r) = 7 +1, (4.1)

where dség, is the metric of S and the Euclidean time is periodic t ~ ¢ + 3. The mass of
the thermal AdS5 was computed in [R9 as
_ 3ml?
~ 32Gs
by utilizing the boundary stress tensor method. This is precisely the same as the Casimir
energy of N = 4 U(N) super Yang-Mills theory on R x S? given in (B.15) with k£ = 1. The

5 dimensional Newton constant G is written as G5 = 7l3/(2N) in terms of the dual gauge

(4.2)

theory. For simplicity we set the AdS radius as [ = 1.
The metric of the AdS-Schwarzschild black hole is

ds®> = h(r)dt* + _dr2 + r2ds%s h(r)y=r*+1-— T—g (4.3)
h(r) S5 r2’ ’
where the period of the Euclidean time is given by 0, = 27T’I“+/(2T_2|_ + 1). We denote
r4 as the horizon satisfying h(r;) = 0 or equivalently 7“8 = 7“3_ + Ti.ls The Mass of the
AdS-Schwarzschild black hole is [RJ]
3mrd 3m
+ )
8Gs = 32Gs

where the second term is the constant AdSs contribution. This mass can be expanded by

M =

(4.4)

T = 1/f, at high temperature as [Rg
3
M = 2 (r*T* - 2°T2) + 0(1), (4.5)
8Gs

which is about 3/4 times the energy given in (B.30) with k = 1.1

B There are two solutions r+ to this equation, which implies that t